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A B S T R A C T   

All species of hard ticks associated with reptiles as hosts throughout their life cycle, are currently assigned to 
genera including Amblyomma and Africaniella. Among these species, based on literature data, Africaniella 
transversale has never been investigated for the presence of tick-borne pathogens. In this study, seven DNA ex
tracts (two from A. transversale and five from Amblyomma exornatum) were screened for the presence of 
important tick-borne protozoa (piroplasms) and bacteria (Anaplasmataceae and Rickettsiaceae) with conven
tional PCRs and sequencing. A new heat shock protein chaperonin (groEL) gene-specific PCR was also developed 
to identify Occidentia spp. in these samples. 

In A. transversale, Occidentia massiliensis (previously detected in rodent-associated soft ticks) and Rickettsia 
hoogstraalii were present. While the latter was molecularly identical with formerly reported sequences of this 
rickettsia, the genotype of O. massiliensis was new based on sequence and phylogenetic analyses of its groEL gene. 
In A. exornatum, a Rickettsia genotype closely related to R. tamurae and R. monacensis, was detected. The ompA 
sequence of this genotype was identical to that of Rickettsia sp. Ae-8 reported from A. exornatum in a reptile 
breeding facility in the USA. 

These results show that A. transversale might carry O. massiliensis which (unless having a symbiotic nature in 
ticks) may originate either from the reptile host of this hard tick species or the rodent prey of reptiles. This is also 
the first detection of the reptile tick-associated Rickettsia sp. Ae-8 (phylogenetically aligning with R. tamurae, R. 
monacensis) in Africa, i.e. within the original geographical range of A. exornatum.   

1. Introduction 

Among hard ticks (Acari: Ixodidae), Amblyomma species occur 
throughout the tropical and sub-tropical regions of the world (Gugliel
mone et al., 2014). The taxonomy of this genus is currently under 
revision. Apart from Amblyomma sensu stricto, several species formerly 
listed in this genus were reassigned to a new subfamily (Bothriocroto
ninae: Klompen et al., 2002) or to new genera (Archaeocroton and 
Robertsicus: Barker and Burger, 2018; Africaniella: Hornok et al., 2020). 
Taxonomically revised species in the latter three genera are comprised 

of eyeless, reptile-associated ticks. 
The primary usage of reptiles as a food source only occurs in tick 

species formerly, or still, listed in the genus Amblyomma, i.e., around 30 
species are usual or exclusive parasites of reptiles from the order 
Squamata (Horak et al., 2006; Guglielmone et al., 2014). While these 
reptile-associated tick species can occasionally parasitize higher verte
brate hosts (Horak et al., 2018), they are not thought to play any role in 
the transmission of pathogens. On the other hand, these ticks will readily 
have access to tick-borne pathogens from reptiles. 

This study aimed at screening tick-borne pathogens in connection 
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with the first phylogenetic analysis of two African, reptile-associated 
ixodid tick species, Amblyomma exornatum and Africaniella transversale 
(Hornok et al., 2020). Both tick species inhabit the Afrotropical 
zoogeographic region (Guglielmone et al., 2014), and use Squamata as 
hosts (monitor lizards and pythons, respectively). In this study, speci
mens of both tick species (five A. exornatum and two A. transversale) 
were molecularly investigated for the presence of three groups of 
important tick-borne pathogens, i.e. Rickettsiaceae, Anaplasmataceae 
and piroplasms. 

2. Materials and methods 

2.1. Specimens used in this study  

(1) Africaniella transversale (one female, one nymph) collected from 
Python regius imported into United Arab Emirates prior to 2017 
(date unknown);  

(2) Amblyomma exornatum (one female, three nymphs and DNA 
extract from the legs of a fourth nymph) collected from Varanus 
albigularis in Limpopo Province, South Africa during September 
2016. 

Ticks were stored in 96% ethanol and were identified under a VHX- 
5000 digital microscope (Keyence Co., Osaka, Japan) as reported by 
Hornok et al. (2020). DNA was extracted with the QIAamp DNA Mini Kit 
(Qiagen, Hilden, Germany) according to the manufacturer’s in
structions, including an overnight digestion in tissue lysis buffer and 
Proteinase-K at 56 ◦C. 

2.2. Target groups screened with conventional PCRs  

(1) Rickettsiales: Anaplasmataceae 

A 350-bp-long fragment of the 16S rRNA gene was amplified with the 
primers EHR-16sD (5′-GGT ACC YAC AGA AGA AGT CC-3′) and EHR- 
16sR (5′-TAG CAC TCA TCG TTT ACA GC-3′) (Brown et al., 2001) as 
reported (Hornok et al., 2018a). These primers were designed to detect 
genera within Anaplasmataceae, but may also yield PCR products of 
members from closely related families (Parola et al., 2003).  

(2) Occidentia massiliensis (Rickettsiales: Rickettsiaceae) 

New primers, i.e., Om-groELf1 (5′- AAA AAA GAA ATG TTA GAA 
GAT ATT GC-3′) and Om-groELr2 (5′-GTA CGT ACW ACT TTA GTT GG- 
3′) were designed to match the heat shock chaperonin protein encoding 
groEL gene of O. massiliensis (note that based on alignments this primer 
pair may also amplify Orientia tsutsugamushi). Based on currently 
available GenBank data, these primers only align to sequences of these 
two species, amplifying a 656- and a 669-bp-long fragment of their groEL 
genes, respectively. The reaction volume was 25 μl, which included 3 μl 
of extracted DNA, and 22 μl of reaction mixture containing 1 unit of 
HotStarTaq Plus DNA polymerase (5 U/μl), 200 μM of PCR nucleotide 
mix, 1 μM of each primer and 2.5 μl of 10 × Coral Load PCR buffer (15 
mM MgCl2 included). For amplification, an initial denaturation step at 
95 ◦C for 5 min was followed by 40 cycles of denaturation at 95 ◦C for 20 
s, annealing at 50 ◦C for 30 s and extension at 72 ◦C for 1 min. Final 
extension was performed at 72 ◦C for 5 min.  

(3) Rickettsia species (Rickettsiales: Rickettsiaceae) 

Three consecutive PCRs were used to screen for rickettsiae (Hornok 
et al., 2018b), for which the target lengths and corresponding primers 
were as follows:   

(a) a 380 bp-long fragment of the citrate synthase (gltA) gene with 
the primers RpCs.877p (5′-GGG GGC CTG CTC ACG GCG G-3′) 
and RpCs.1258n (5′-ATT GCA AAA AGT ACA GTG AAC A-3′) 
(Regnery et al., 1991);  

(b) an approximately 480-bp-long fragment of the 17 kDa surface 
antigen gene of Rickettsia spp. with primers 17kd1 (5′-GCT CTT 
GCA ACT TCT ATG TT-3′) and 17kd2 (5′-CAT TGT TCG TCA GGT 
TGG CG-3′) (Williams et al., 1992); and  

(c) a 532-bp-long fragment of the outer membrane protein A (ompA) 
gene of Rickettsia spp. was amplified with primers Rr190.70p (5′- 
ATG GCG AAT ATT TCT CCA AAA-3′) and Rr190.602n (5′-AGT 
GCA GCA TTC GCT CCC CCT-3′) (Regnery et al., 1991).  

(4) Piroplasms (Apicomplexa: Piroplasmida): 

The conventional PCR used for the detection of piroplasms was 
modified from Casati et al. (2006), as reported in Hornok et al. (2014). 
This method amplifies an approximately 500-bp-long fragment of the 
18S rRNA gene of Babesia and Theileria spp. with the primers BJ1 (for
ward: 5′-GTC TTG TAA TTG GAA TGA TGG-3′) and BN2 (reverse: 5′-TAG 
TTT ATG GTT AGG ACT ACG-3′). 

2.3. Sequencing and phylogenetic analyses 

Purification and sequencing were done by Biomi Ltd. (Gödöllő, 
Hungary). Sequences were compared to GenBank data with the BLASTn 
program (https://blast.ncbi.nlm.nih.gov). New sequences were sub
mitted to GenBank (gltA gene: MN150178 and MN150179 for Rickettsia 
hoogstraalii and Rickettsia sp. Ae-8, respectively; 17 kDa gene: 
MN150180 and MN150181 for R. hoogstraalii and Rickettsia sp. Ae-8, 
respectively; ompA gene: MN150182 for Rickettsia sp. Ae-8; 16S rRNA 
and groEL genes: MN108044 and MT833659, respectively, for 
O. massiliensis). For phylogenetic analyses, sequences from this study 
and others from GenBank with high coverage (i.e. 99–100% of the 
fragment length amplified here) were used and resampled 1000 times to 
generate bootstrap values. Phylogenetic analyses were conducted with 
the Maximum-Likelihood method, Jukes Cantor and Tamura-3 models 
(according to the selection of the program) by using MEGA version 7.0. 

3. Results 

All samples were negative for piroplasms. However, both samples of 
A. transversale were positive in the 16S rRNA gene PCR. Unexpectedly, 
both sequences were 100% (301/301 bp) identical to that of the origi
nally described (and only known) type strain of O. massiliensis (Rick
ettsiales: Rickettsiaceae), reported from the soft tick Ornithodoros sonrai 
collected in rodent burrows, in Senegal (GenBank: NR_149,220: 
Mediannikov et al., 2014a). All samples of Am. exornatum were negative 
in this test. Part of the groEL gene was also successfully amplified from 
these two ticks, having only 571/580 bp (98.4%) identity with the 
corresponding sequence of the type strain (OS18) of O. massiliensis 
(KJ395314). This was also reflected by the results of phylogenetic 
analysis, because the separation of these two (i.e., hard or soft 
tick-derived) strains of O. massiliensis was highly (100%) supported 
(Fig. 1). 

In addition, from both samples of A. transversale, the rickettsia- 
specific gltA PCR yielded a sequence with 100% (328/328 bp) identity 
to R. hoogstraalii (GenBank: MF379281, from Haemaphysalis parva). 
These samples were also positive in the PCR amplifying the 17 kDa 
antigen gene of rickettsiae. Sequencing confirmed the results of the gltA 
assay, with 100% (378/378 bp) identity to R. hoogstraalii (GenBank: 
FJ767736, from Haemaphysalis sulcata). However, amplification of the 
ompA gene fragment was not successful from A. transversale. 

All DNA extracts of A. exornatum were positive in the Rickettsia gltA 
PCR. In these samples, sequencing identified another Rickettsia species, 
which was closely related to Rickettsia sp. 10610RCRICK (GenBank: 
EF662058, from Ixodes scapularis), with 99.7% (329/330 bp) gltA 
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sequence identity. Considering the results of PCRs performed to analyze 
this species further, both PCRs (for the 17 kDa antigen gene and the 
ompA gene fragments) yielded sequenceable products which were 100% 
identical (379/379 bp and 470/470 bp, respectively) to those of Rick
ettsia sp. Ae-8 (GenBank: DQ365986 and DQ365985, respectively, also 
reported from A. exornatum). In addition, this rickettsia had 465/470 bp 
(98.9%) ompA sequence identity with the type strain (AT-1) of 

R. tamurae (DQ103259) reported from Amblyomma testudinarium ticks in 
Japan, and the separation of these two rickettsiae was supported by high 
bootstrap value in the phylogenetic analysis (Fig. 2). These two species 
clustered together with Rickettsia monacensis, forming a sister group to 
other spotted fever group rickettsiae (Fig. 2). 

Fig. 1. GroEL gene Maximum Likelihood tree (Jukes-Cantor model) of Rickettsiaceae. The species name is followed by the isolation source (if known), the country of 
origin and GenBank accession number. The sequence from this study is indicated in red font and bold accession number. The scale-bar indicates the number of 
substitutions per site. 
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4. Discussion 

Occidentia massiliensis, isolated and reported previously only from 
soft ticks collected in rodent burrows in Senegal (Mediannikov et al., 
2014a), was identified here in A. transversale. To the best of our 
knowledge, this is the first molecular evidence of O. massiliensis occur
ring in any hard tick species. Because two genetic markers of 
O. massiliensis were amplified from A. transversale, it is reasonable to 
suppose that not only DNA fragments, but also complete microorgan
isms of this species were present in hard ticks. In this context, the 
question arises on the exact source of this bacterium in A. transversale. 

An important geographical coincidence is that Lucas (1845) 
collected the type specimens of A. transversale in Senegal, the same 
country where O. massiliensis was collected from the soft tick species, 
O. sonrai (Mediannikov et al., 2014a). Ornithodoros sonrai is a nidicolous 
soft tick species inhabiting the burrows of small mammals (Medianni
kov et al., 2014b) and mostly using rodents as hosts (Logan et al., 1993; 
Sylla et al., 2004). The main host of A. transversale, i.e., ball pythons 
most often also inhabit rodent burrows or abandoned termite mounds 
(Murphy et al., 2003; Rizzo, 2014). 

Africaniella transversale completes its entire on-host life cycle in as
sociation with pythons (Lucas, 1845), on which it feeds once in each 

Fig. 2. OmpA gene Maximum Likelihood tree (Tamura-3 model) of Rickettsia species. Each species name is followed by the country of origin and GenBank accession 
number. The sequence from this study is indicated in red font and bold accession number. The scale-bar indicates the number of substitutions per site. 
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stage and has never been reported from rodents. Similarly, O. sonrai is 
known to use reptilian hosts, even snakes occasionally (Sylla et al., 
2004) and it feeds several times in the nymphal and adult stages. 
Therefore, we consider it likely that O. massiliensis transferred from 
O. sonrai to A. transversale via reptiles (or when co-feeding on reptiles). 
Similarly, given the strong association of pythons with their main prey 
items (rodents), including co-habitation, based on the present results, 
the susceptibilities of both pythons and rodents to O. massiliensis are 
equally possible. However, the latter seems more likely, since the type 
species of the closely related genus, Orientia (i.e., O. tsutsugamushi) also 
infects rodents (Cosson et al., 2015). In summary, the host range of 
O. massiliensis and its association with soft or hard ticks as vectors or 
reservoirs await further clarification. 

In addition to O. massiliensis, we also detected R. hoogstraalii in Af. 
transversale. This rickettsia was originally described from ticks of the 
genus Haemaphysalis (Duh et al., 2010), to which A. transversale is 
closely related (Hornok et al., 2020). Taken together, these are the first 
microorganisms demonstrated from A. transversale. 

The rickettsia detected here for the first time in A. exornatum in Af
rica, was previously reported in the same tick species from exotic rep
tiles (Varanus olivaceus) kept in the USA (Reeves et al., 2006). On the 
other hand, based on its gltA gene, this species is also very closely related 
(with only 1 bp difference) to the Rickettsia sp. circulating in Ixodes ticks 
in Maryland, USA (GenBank: EF662058) (Swanson and Norris, 2007). 
The presence of the same rickettsia in all examined A. exornatum ticks 
might be related to the transovarial origin and symbiotic nature of these 
microorganisms, as proposed earlier (Reeves et al., 2006; Swanson and 
Norris, 2007). 

This is the first detection of a rickettsia associated with the reptile 
tick, A. exornatum in Africa, the original geographical range of its car
rier. Interestingly, an imported case of this rickettsia was also reported 
from Japan, but with a shorter, 461 bp sequence (AB795206), amplified 
from Amblyomma latum originating from Madagascar (Andoh et al., 
2015). It is also noteworthy that both Rickettsia species, shown here to be 
phylogenetically closely related to Rickettsia sp. Ae-8, are known to be 
associated with ticks specialized to feed on lizards (Squamata: Varani
dae, Lacertidae): Rickettsia tamurae in Japan (Fournier et al., 2006) and 
R. monacensis in Europe (Sánchez-Montes et al., 2019), respectively. 
This suggests a common evolutionary origin of these three rickettsiae 
related to their host-associations. 
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