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Abstract
Evidence	for	divergent	selection	and	adaptive	variation	across	the	landscape	can	pro-
vide	insight	into	a	species'	ability	to	adapt	to	different	environments.	However,	despite	
recent	advances	in	genomics,	it	remains	difficult	to	detect	the	footprints	of	climate-	
mediated	selection	in	natural	populations.	Here,	we	analysed	ddRAD	sequencing	data	
(21,892	SNPs)	 in	conjunction	with	geographic	climate	variation	to	search	for	signa-
tures	of	adaptive	differentiation	in	twelve	populations	of	the	bank	vole	(Clethrionomys 
glareolus)	distributed	across	Europe.	To	identify	the	loci	subject	to	selection	associ-
ated	with	climate	variation,	we	applied	multiple	genotype-	environment	association	
methods,	two	univariate	and	one	multivariate,	and	controlled	for	the	effect	of	popula-
tion	structure.	In	total,	we	identified	213	candidate	loci	for	adaptation,	74	of	which	
were	located	within	genes.	In	particular,	we	identified	signatures	of	selection	in	candi-
date	genes	with	functions	related	to	lipid	metabolism	and	the	immune	system.	Using	
the	 results	 of	 redundancy	 analysis,	 we	 demonstrated	 that	 population	 history	 and	
climate	have	joint	effects	on	the	genetic	variation	in	the	pan-	European	metapopula-
tion.	Furthermore,	by	examining	only	candidate	loci,	we	found	that	annual	mean	tem-
perature	is	an	important	factor	shaping	adaptive	genetic	variation	in	the	bank	vole.	
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1  |  INTRODUC TION

Understanding	how	organisms	 adapt	 to	 their	 local	 environment	 is	
one	of	 the	 central	 questions	of	 evolutionary	biology,	which	 is	 be-
coming	increasingly	important	in	a	world	of	human-	induced	rapid	cli-
mate	change	and	environmental	change.	It	is	generally	accepted	that	
genetic	variation	within	and	among	populations	is	influenced	by	the	
local	environment	in	which	organisms	reside.	For	example,	popula-
tions	along	an	environmental	gradient	may	be	adapted	to	their	local	
conditions	 if	 selection	 is	 strong	 enough	 relative	 to	 drift	 and	 gene	
flow	between	populations	(Kawecki	&	Ebert,	2004).	Since	local	ad-
aptation	arises	from	natural	selection	on	adaptive	phenotypic	traits,	
it	can	be	demonstrated	by	genetic	differentiation	at	the	genetic	loci	
underlying	 those	 traits	 (Phifer-	Rixey	 et	 al.,	 2018;	 Stillwell,	 2010; 
Stinchcombe	et	al.,	2004).	The	genetic	basis	for	environmental	ad-
aptation	has	been	uncovered	for	a	few	obvious	traits	with	distinct	
phenotypic	characteristics,	such	as	variation	in	coat	colour	in	mice	
in	relation	to	environmental	background	colour	(Linnen	et	al.,	2009; 
Nachman	et	al.,	2003),	reduction	in	armour	plating	in	sticklebacks	in	
response	to	freshwater	colonization	(Colosimo	et	al.,	2005;	Cresko	
et	al.,	2004),	or	body	size	and	blood	chemistry	of	house	mice	along	a	
latitudinal	cline	in	Eastern	North	America	(Phifer-	Rixey	et	al.,	2018).	
Rather	 than	 identifying	 specific	 phenotypic	 traits,	 signals	 of	 local	
adaptation	 can	 also	be	detected	by	 scanning	 the	 genome	 for	 cor-
relations	between	allele	 frequencies	and	environmental	 factors	of	
interest	 after	 correcting	 for	 population	 structure.	 Such	 genetic-	
environment	association	(GEA)	tests	are	able	to	account	for	genome-	
wide	patterns	caused	by	neutral	processes	 such	as	gene	 flow	and	
genetic	drift	(Coop	et	al.,	2010;	Frichot	&	François,	2015;	Günther	&	
Coop,	2013;	Joost	et	al.,	2007).	The	performance	of	GEA	methods	
varies	considerably	depending	on	the	sampling	design,	demographic	
history,	 and	 the	 amount	 of	 collinearity	 between	 neutral	 axes	 of	
population	 structure	 and	 environmental	 variables	 (de	 Villemereuil	
et	al.,	2014;	Frichot	et	al.,	2015;	Whitlock	&	Lotterhos,	2015).

Signals	 of	 local	 adaptation	 are	 expected	 to	 affect	 only	 a	 small	
part	of	the	genome,	and	most	of	the	genome-	wide	patterns	at	ge-
netic	loci	are	thought	to	come	about	by	neutral	processes,	such	as	
genetic	drift,	gene	flow,	or	demographic	history.	When	gene	flow	is	
reduced	with	increasing	geographic	distance	because	of	limited	dis-
persal,	this	results	in	a	classic	pattern	of	isolation	by	distance	(IBD;	
Wright,	1943).	Alternatively,	isolation	by	environment	(IBE)	describes	

a	 pattern	 in	which	 genetic	 differentiation	 increases	with	 environ-
mental	differences	independent	of	geographic	distance.	This	might	
occur	because	of	selection	acting	against	maladapted	immigrants	or	
via	other	non-	adaptive	processes	affecting	gene	flow	among	popu-
lations	in	ecologically	distant	habitats	(Sexton	et	al.,	2014;	Shafer	&	
Wolf,	2013;	Wang	&	Bradburst,	2014).	Separating	the	effects	of	IBE	
from	those	of	IBD	can	be	challenging,	as	both	patterns	can	result	in	
similar	patterns	of	genetic	variation,	for	instance,	when	geographic	
distance	 is	 correlated	 with	 environmental	 distance	 (Bradburd	
et	al.,	2013;	Meirmans,	2012),	which	is	often	the	case	in	natural	pop-
ulations.	Disentangling	these	effects	can	inform	us	about	the	relative	
contribution	of	both	processes	to	patterns	of	genetic	differentiation.

Theoretical	and	empirical	studies	suggest	 that	many	adaptive	
processes	have	a	polygenic	basis	and	are	controlled	by	many	genes	
of	small	effect	 (Barghi	et	al.,	2020;	Yeaman,	2015).	Conventional	
univariate	GEA	methods	aim	at	detecting	alleles	that	correlate	with	
(composite)	environmental	variables	and	are	putatively	under	se-
lection,	 focusing	 on	 only	 one	 locus	 at	 a	 time.	 Such	methods	 are	
good	 at	 detecting	 signals	 from	 adaptive	 loci	 with	 large	 effects,	
but	 their	 ability	 to	 detect	 weaker	 signals	 of	 polygenic	 selection	
acting	 across	 many	 loci	 is	 rather	 limited	 (Rellstab	 et	 al.,	 2015; 
Wellenreuther	 &	 Hansson,	 2016).	 In	 contrast,	 multivariate	 GEA	
methods,	such	as	redundancy	analysis	(RDA),	are	able	to	take	into	
account	all	environmental	variation	at	the	same	time	and	can	at	the	
same	time	detect	correlations	between	different	sets	of	 loci	and	
different	 sets	 of	 environmental	 variables	 (Forester	 et	 al.,	 2018).	
By	 focusing	 on	multiple	 loci	 at	 the	 same	 time,	 RDA	 is	 better	 at	
detecting	weak	multilocus	 signals	 of	 selection	 compared	 to	 uni-
variate	approaches	(Capblancq	et	al.,	2018;	Forester	et	al.,	2018),	
but	it	has	not	yet	been	widely	used	in	evolutionary	ecology.	In	ad-
dition,	these	multivariate	approaches	also	allow	the	quantification	
of	 spatial	 patterns	 of	 adaptive	 genetic	 variation	 associated	with	
environmental	variables	(Lasky	et	al.,	2012;	Micheletti	et	al.,	2018; 
Nadeau	et	al.,	2016).

Small	 forest	mammals	 provide	 an	 ideal	 biological	model	 to	 in-
vestigate	 the	 relative	 roles	 of	 selective	 and	 neutral	 factors	 in	 re-
sponse	 to	 clinal	 environmental	 gradients	 because	 they	 have	 large	
geographic	 ranges	 and	 individuals	 are	 not	 highly	 mobile	 within	
the	 range	 (Haasl	 &	 Payseur,	 2016).	 Such	 gradients	 and	 their	 re-
spective	 genetic	 responses	 include	 climate	 and	 divergence	 in	
gene	 regulatory	 regions	 and	 genes	 related	 to	 metabolism	 and	

By	combining	landscape	genomic	approaches,	our	study	sheds	light	on	genome-	wide	
adaptive	differentiation	and	 the	spatial	distribution	of	variants	underlying	adaptive	
variation	influenced	by	local	climate	in	bank	voles.

K E Y W O R D S
Clethrionomys glareolus,	climate	gradient,	genomic	analysis,	local	adaptations,	rodent
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immunity	(Phifer-	Rixey	et	al.,	2018)	or	body	size	and	extremities	ratio	
(Ballinger	&	Nachman,	2022),	 rural-	urban	 gradients	 and	 signals	 of	
selection	in	genes	involved	in	lipids	and	carbohydrates	metabolism	
(Harris	&	Munshi-	South,	2017),	as	well	as	altitudinal	gradients	and	
genes	related	to	metabolic	function	and	oxygen	transport	(Beckman	
et	al.,	2022;	Waterhouse	et	al.,	2018).

The	 bank	 vole	 Clethrionomys glareolus	 (also	 known	 as	Myodes 
glareolus;	Kryštufek	et	al.,	2020)	 is	a	small	Eurasian	forest-	dwelling	
rodent	 with	 a	 broad	 geographic	 distribution	 in	 Europe,	 ranging	
from	the	Mediterranean	peninsulas	and	 the	southern	coast	of	 the	
Black	Sea	in	the	south	almost	to	the	northern	edge	of	Scandinavia	
(Figure 1).	 This	 distribution	 covers	 a	 wide	 temperature	 gradi-
ent	 (Figure 1).	 Bank	 voles	 survived	 in	 several	 refugia	 during	 the	
Last	 Glacial	 Maximum,	 including	 the	 well-	known	 refugia	 on	 the	
Mediterranean	 peninsulas	 and	 cryptic	 refugia	 in	 the	 Carpathians	
(Kotlik	 et	 al.,	 2006;	 Wójcik	 et	 al.,	 2010)	 and	 the	 Ural	 Mountains	
(Abramson	et	al.,	2009;	Deffontaine	et	al.,	2005).	Their	subsequent	
recolonization	of	Europe,	when	the	climate	became	more	favourable	
at	the	beginning	of	the	Holocene,	resulted	in	a	complex	genetic	struc-
ture	with	several	distinct	phylogeographic	 lineages,	first	described	
based	on	mitochondrial	DNA	sequences	(Filipi	et	al.,	2015)	and	later	
confirmed	by	 genome-	wide	 SNP	analyses	 (Horniková	 et	 al.,	2021; 

Marková	et	al.,	2020).	Bank	voles	have	limited	dispersal	capabilities	
(Deter	et	al.,	2008;	Viitala	et	al.,	1994)	and	short	generation	times,	
resulting	 in	 large	 local	 effective	 population	 sizes.	 Together,	 these	
factors	result	in	a	large	evolutionary	potential	for	genetic	responses	
to	 local	conditions.	Therefore,	bank	voles	are	a	suitable	system	to	
study	 the	 signatures	 of	 local	 adaptation	 in	 response	 to	 spatially	
varying	climate-	induced	selective	pressures	along	an	environmental	
gradient.	They	have	been	 the	 target	of	GEA	 studies	 in	 relation	 to	
geographic	expansion	(White	et	al.,	2013)	and	tolerance	to	Puumala 
orthohantavirus	 infection	 (Rohfritsch	 et	 al.,	 2018).	 However,	 the	
specific	 selection	 forces	 driving	 their	 adaptations	 along	wide	 lati-
tudinal	gradients,	as	well	as	 the	genetic	 loci	 involved,	are	not	well	
understood.

The	 aim	of	 this	 study	 is	 to	 investigate	 how	population	 history	
and	adaptation	to	local	climate	affect	the	spatial	distribution	of	ge-
nomic	variation	in	bank	vole	populations	across	Europe.	We	identi-
fied	candidate	genes	and	climate	variables	responsible	for	adaptive	
variation	by	testing	for	associations	between	allele	frequencies	and	
environmental	 variables	 using	multiple	 univariate	 and	multivariate	
GEA	methods.	We	estimated	the	relative	role	of	population	struc-
ture	versus	environmental	selection	in	explaining	observed	genetic	
variation	by	accounting	for	the	neutral	genetic	structure.

F I G U R E  1 Sampling	locations	of	populations	(coloured	circles)	of	C. glareolus	in	Europe	with	annual	mean	temperature	[data:	www. world 
clim.	org	(Fick	&	Hijmans,	2017)	and	current	distribution	(Shenbrot	&	Krasnov,	2005)].	C,	Central;	E,	Eastern;	N,	North;	S,	South;	W,	Western;	
.fi,	Finland;	.se,	Sweden;	.pl,	Poland;	.cz,	Czechia;	 .de,	Germany;	it,	Italy;	.fr,	France;	.ro,	Romania.
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Annual mean temperature (°C)
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2  |  METHODS

2.1  |  Vole samples and climate variables

Tissue	samples	of	a	total	of	275	voles	representing	12	widely	dis-
persed	populations	 (Figure 1)	with	21–24	individuals	per	popula-
tion	(Table S1)	were	collected	by	the	authors,	covering	a	distance	
of	 3200 km	 from	 the	 northeast	 in	 Finland	 (25.9° E	 68.0° N)	 at	
the	northern	distribution	limit	to	the	southwest	in	France	(0.8° E	
43.2° N)	and	2700 km	from	the	southwest	 (France)	to	the	south-
east	 in	Romania	 (25.1° E	46.6° N).	For	each	population,	values	of	
10	 bioclimatic	 variables	 were	 downloaded	 from	 the	 WorldClim	
V2	dataset	 (Fick	&	Hijmans,	2017).	Climate	at	 the	sampling	sites	
ranged	from	−2	to	12.5°C	for	mean	annual	temperature,	from	500	
to	1000	(SD*100)	for	temperature	seasonality,	from	5.5	to	9.8°C	
for	 mean	 diurnal	 temperature	 range,	 from	 480	 to	 1080 mm	 for	
mean	annual	precipitation,	and	from	11%	to	50%	for	precipitation	
seasonality.	 To	 account	 for	 correlation	 among	 climate	 variables	
(Table S2),	 principal	 component	 analysis	 (PCA)	 was	 used	 to	 re-
duce	dimensionality	in	R	v3.4.4	using	the	prcomp	function	(R	Core	
Team,	2018)	 (Figure S1).	This	resulted	in	two	climate-	based	prin-
cipal	components	that	together	explained	80%	of	the	total	varia-
tion.	PC1	explained	62.5%	of	the	variation	and	was	correlated	with	
increasing	 temperature	 and	 precipitation	 variables	 (except	 for	 a	
negative	correlation	with	temperature	seasonality	and	precipita-
tion	seasonality),	while	PC2	explained	17.1%	of	the	variation	and	
was	mainly	correlated	with	an	 increase	 in	precipitation	variables	
and	 weakly	 correlated	 with	 decreasing	 temperature	 variables	
(Table S3).

2.2  |  Molecular methods

DNA	was	extracted	using	the	DNEasy	Blood	&	Tissue	kit	(Qiagen,	
Hilden,	Germany),	 quantified	 using	 a	Qubit	 2.0	 fluorometer	 (Life	
Technologies	 Inc.,	 ON,	 Canada),	 and	 subjected	 to	 a	 double	 di-
gest	 restriction-	associated	 DNA	 (ddRAD)	 sequencing	 protocol	
(Peterson	et	al.,	2012,	Supplement	M1).	Samples	were	grouped	into	
pools	 of	 48	 individuals	 and	 cleaned	with	 Speedbeads.	 Each	 pool	
was	 size-	selected	 for	 fragments	of	300–400 bp	 in	 length	using	 a	
Pippin	Prep	system	 (Sage	Science,	Beverly,	MA,	USA).	This	 range	
should	yield	approximately	38,000	ddRAD	loci,	based	on	in	silico	
digestion	of	the	C. glareolus	genome	sequence	(GCA_001305785.1)	
using	SimRAD	(Lepais	&	Weir,	2014).	For	each	pool,	we	performed	
qPCR	to	determine	the	optimal	number	of	PCR	cycles	based	on	the	
onset	of	the	saturation	phase	on	amplification	plots	(range:	11–14	
cycles;	Gansauge	&	Meyer,	2013).	Pools	were	then	amplified	in	four	
parallel	reactions	of	40 μL	with	primers	that	amplify	only	fragments	
containing	both	P1	and	P2	adapters.	The	 resulting	 libraries	were	
sequenced	in	two	separate	runs	on	an	Illumina	NextSeq	500	with	
mid-	output	kits.	We	first	sequenced	the	libraries	with	75 bp	paired-	
end	(PE)	and	then	performed	another	sequencing	run	with	150 bp	
PE	sequencing.

2.3  |  Mapping and SNP calling

Cutadapt	 v1.4	 (Martin,	 2011)	 was	 used	 to	 remove	 adapter	 se-
quences	and	trim	bases	with	a	Phred	score	of	less	than	20	at	the	
3′	 end,	 retaining	only	 reads	with	 a	 length	 greater	 than	or	 equal	
to	 35 bp.	 These	 were	 then	 demultiplexed	 and	 assigned	 to	 indi-
viduals	 using	 iPyrad	 v0.7.13	 (Eaton,	2014).	 To	 increase	mapping	
success,	 we	 used	 the	 published	M. glareolus	 reference	 genome,	
which	we	 improved	with	 the	 pipeline	Cross-	Species	 Scaffolding	
(Grau	 et	 al.,	 2018)	 using	 the	 prairie	 vole	 (Microtus ochrogaster)	
reference	genome	(GCA_000317375.1,	Table S4).	We	considered	
only	 biallelic	 SNPs	with	 a	minimum	 base	 quality	 of	 20,	 a	minor	
allele	frequency	greater	than	0.05,	a	minimum	p-	value	threshold	
for	calling	a	SNP	of	10−6,	a	minimum	read	depth	of	5,	and	a	maxi-
mum	read	depth	of	100	per	sample.	 In	addition,	a	site	had	to	be	
present	in	at	least	12	individuals	in	each	of	the	12	populations	to	
be	considered.

2.4  |  Genetic diversity and population structure

We	 estimated	 diversity	 statistics	 within	 populations	 using	
ANGSD	 (Korneliussen	 et	 al.,	2013).	 First,	 we	 calculated	 nucleo-
tide	 diversity	 as	 the	 average	 number	 of	 pairwise	 differences	 (π)	
(Nei	 &	 Li,	 1979)	 and	 as	 the	 proportion	 of	 segregating	 sites	 (θW)	
(Watterson,	 1975).	 We	 estimated	 genome-	wide	 heterozygosity	
as	 the	 proportion	 of	 heterozygous	 genotypes	 in	 the	 total	 num-
ber	of	genotypes	 for	each	 individual	based	on	 its	site	 frequency	
spectrum	(SFS)	and	estimated	the	inbreeding	coefficients	(F)	using	
ngsF	(Vieira	et	al.,	2013).

To	 assess	population	 structure	using	PCA,	we	 created	 a	 cova-
riance	matrix	among	 individuals	using	ngsCovar	 from	the	ngsTools	
suite	(Fumagalli	et	al.,	2014)	and	calculated	principal	components	in	
R	v3.4.4	(R	Core	Team,	2018)	using	the	‘eigen’	function.	The	number	
of	principal	components	explaining	most	of	the	population	structure	
was	determined	from	the	scree	plot	of	PCA	(Cattell,	1966).

We	 assessed	 admixture	 among	 populations	 using	 NGSadmix	
(Skotte	et	al.,	2013)	with	a	number	of	clusters	K	ranging	from	2	to	
14.	We	repeated	each	analysis	20	times	and	reported	the	results	of	
the	highest	likelihood	analysis	for	each	K.	Finally,	we	calculated	the	
pairwise FST	in	ANGSD	using	the	shared	SFS	for	each	pair	of	pop-
ulations.	The	results	were	also	used	to	test	for	IBD	by	calculating	
the	correlation	between	pairwise	linearized	FST	values	[FST/(1 − FST)]	
and	log-	transformed	pairwise	geographic	distance	(Rousset,	1997).	
We	subsequently	 tested	 for	patterns	of	 IBE,	while	controlling	 for	
IBD	 using	 partial	 Mantel	 tests.	 Environmental	 distances	 for	 the	
two	climate-	based	principal	components	and	the	climatic	variables	
were	 computed	 as	 the	 Euclidean	 distance	 between	 pairs	 of	 pop-
ulations using the vegdist	 function	of	 the	Vegan	package	 (version	
2.5-	4,	Dixon,	2003)	 in	R.	Then	the	correlation	between	linearized	
FST	and	environmental	distance	was	 tested	 for	each	variable	sep-
arately,	 while	 including	 geographic	 distance	 included	 a	 control	
variable.	The	significance	of	 the	 r	 statistics	 for	 IBD	and	 IBE	 tests	
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    |  5 of 19FOLKERTSMA et al.

was	 tested	using	1000	permutation.	 To	 correct	 for	multiple	 test-
ing,	a	Benjamini	and	Hochberg	FDR	correction	of	5%	was	applied	
(Benjamini	&	Hochberg,	1995).

2.5  |  Identification of loci associated with 
climate variation

To	 identify	 loci	 subject	 to	 climate-	induced	 selection,	we	 searched	
for	genomic	markers	that	showed	the	strongest	association	between	
allele	 frequencies	within	populations	and	climatic	conditions	while	
controlling	for	the	effect	of	population	structure.	We	used	the	uni-
variate	approaches	Bayenv2	(Coop	et	al.,	2010)	and	LFMM	(Frichot	
et	 al.,	 2013),	 together	 with	 a	 multivariate	 RDA.	 RDA	 allows	 the	
analysis	 of	 multiple	 environmental	 variables	 and	 covarying	 selec-
tion	signals	across	a	set	of	loci	and	facilitates	the	detection	of	adap-
tive	processes	that	result	in	weak,	multilocus	signatures	of	selection	
(Forester	et	al.,	2018).	 It	was	performed	using	the	package	 ‘Vegan	
2.5-	4’	in	R	(Dixon,	2003).	As	a	conservative	approach,	we	only	con-
sidered	loci	as	candidate	 loci	when	they	were	detected	by	at	 least	
two	methods	(Supplement	M1,	de	Villemereuil	et	al.,	2014).

2.6  |  Partitioning genetic variation between 
population structure and climate

We	also	used	a	series	of	RDAs	to	evaluate	the	amount	of	putatively	
neutral	and	adaptive	genetic	variation	that	could	be	attributed	to	pop-
ulation	structure,	climate,	or	their	joint	effects.	For	this	purpose,	we	
first	performed	separate	(p)RDAs,	including	the	population-	specific	al-
lele	frequencies	of	the	20,500	neutral	SNPs	(excluding	all	outlier	loci	as	
detected	by	GEA	methods)	as	a	dependent	matrix,	to	asses	drivers	of	
genome-	wide	variation.	Secondly,	we	assessed	the	drivers	of	adaptive	
variation	at	loci	with	signals	of	selection.	For	this,	we	performed	addi-
tional	(p)RDAs	where	we	included	the	allele	frequencies	of	subsets	of	
outlier	loci	detected	using	different	GEA	methods	(LFMM,	Bayenv2,	
and	RDA)	as	well	as	 the	subset	of	candidate	 loci	as	dependent	ma-
trices.	We	 included	 two	 independent	matrices	 representing	 climate	
(containing	the	climate	variables	that	are	also	used	to	 identify	outli-
ers)	and	population	structure	(containing	the	first	four	components	of	
the	ngsCovar	analysis	described	above).	We	used	RDA	to	estimate	the	
amount	of	genetic	variation	exclusively	explained	by	either	population	
structure	or	climate	by	conditioning	the	effect	of	each	 independent	
matrix	on	the	other.	To	further	estimate	which	proportion	of	explained	
genetic	 variation	 was	 attributable	 to	 the	 joint	 effect	 of	 population	
structure	and	climate,	we	subtracted	their	exclusive	effects	from	the	
total	 amount	of	 genetic	 variation	explained.	This	 joint	 effect	 repre-
sents	the	shared	effects	of	population	structure	and	climate.

In	addition	to	this,	to	identify	climate	variables	that	contributed	
most	 to	 adaptive	 variation,	 we	 performed	 RDAs	 on	 the	 subsets	
of	outlier	 loci.	Here,	we	assessed	 the	 amount	of	 genetic	 variation	
explained	 by	 each	 climate	 variable	 by	 conditioning	 the	 effect	 of	
the	 respective	 climate	 variable	 on	 all	 other	 climate	 variables	 and	

population	structure.	The	significance	of	each	RDA	was	tested	using	
an	ANOVA	performed	with	1000	permutations.	Finally,	we	 identi-
fied	the	climate	variable	that	was	most	strongly	associated	with	vari-
ation	in	each	outlier	locus.	For	this,	we	extracted	loci	scores	from	the	
separate	RDAs	for	each	climate	variable,	and	we	normalized	these	
scores	to	zero	mean	and	unit	variance.	We	then	considered	the	cli-
mate	variable	with	 the	highest	absolute	score	as	 the	one	with	 the	
strongest	influence	on	that	locus.

2.7  |  Cumulative adaptive variation

We	 calculated	 a	 polygenic	 score	 for	 each	 individual	 to	 assess	 the	
cumulative	 adaptive	 genetic	 contribution	 of	 candidate	 outlier	 loci	
associated	with	each	climate	variable	(Babin	et	al.,	2017;	Gagnaire	&	
Gaggiotti,	2016).	At	the	meta-	population	level,	we	first	identified	the	
relationship	between	allele	frequency	and	each	climate	variable	for	
each	candidate	adaptive	locus.	For	each	individual,	we	then	gener-
ated	a	score	for	each	SNP	by	using	the	genotypes	(0,	1,	or	2).	If	the	
relationship	was	negative,	we	 inverted	the	scores	 (to	2,	1,	or	0)	 to	
obtain	a	positive	relationship.	Polygenic	scores	were	then	calculated	
at	the	individual	level	by	summing	the	score	of	each	SNP	for	a	given	
climate	 variable,	 resulting	 in	 a	 separate	 individual	 polygenic	 score	
for	each	climate	variable.	To	assess	how	well	the	cumulative	signal	of	
putatively	adaptive	alleles	correlates	with	each	climate	variable,	we	
then	tested	the	correlation	between	individual	polygenic	scores	and	
each	variable	using	both	a	 linear	 and	a	quadratic	model,	 selecting	
the	model	with	the	lowest	Akaike	information	criterion	value	as	the	
best	fit.	To	be	able	to	compare	between	the	GEA	methods,	we	also	
performed	the	analysis	on	different	subsets	of	outlier	loci.	We	sepa-
rately	 calculated	 polygenic	 scores	 for	 the	 outlier	 loci	 detected	 by	
RDA	with	and	without	correction	for	population	structure	in	order	
to	examine	the	effects	of	population	structure	on	RDA	results.

2.8  |  SNP annotation and gene ontology

We	used	the	LastZ	pairwise	alignment	tool	v1.04.00	(Harris,	2007)	to	
find	homologous	M. ochrogaster	positions	and	thereby	obtain	func-
tional	annotations	for	candidate	loci.	We	used	a	20,000-	bp	scaffold	
surrounding	each	candidate	locus	as	a	query	in	LastZ	and	the	default	
options	for	calculating	pairwise	alignments.	Only	alignments	with	a	
bit	score	greater	 than	1000	and	a	query	coverage	of	at	 least	50%	
were	considered.	If	multiple	alignments	passed	this	filter,	the	align-
ment	with	the	longest	length	and	highest	bit	score	was	selected	as	
the	best	match.	If	the	loci	were	in	protein-	coding	regions,	we	used	
the	UniProt	database	to	examine	gene	function	and	find	gene	ontol-
ogy	(GO)	terms.	We	performed	an	enrichment	analysis	using	topGO	
(Alexa	&	Rahnenführer,	2010)	in	the	“biological	processes”	category.	
We	compared	our	 list	of	candidate	genes	with	all	the	genes	 in	our	
dataset.	We	used	Fisher's	exact	 test	and	 the	elim	 algorithm	to	ac-
count	for	correlation	in	the	topology	of	the	GO	graph,	and	reported	
the	GO	terms	with	a	p-	value	<.01	and	at	least	four	associated	genes.
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6 of 19  |     FOLKERTSMA et al.

3  |  RESULTS

3.1  |  SNP dataset

We	 obtained	 592.4	 million	 reads	 from	 the	 two	 runs	 of	 sequenc-
ing.	After	filtering	for	low-	quality	reads	and	assigning	individuals	to	
barcodes,	on	average,	1.62	Mio	reads	per	individual	aligned	to	our	
improved	reference	genome,	with	per-	population	averages	ranging	
between	0.96	Mio	(Site	NE1)	and	2.61	Mio	(C1)	reads	per	popula-
tion.	Across	 all	 individuals,	 high-	quality	 reads	 covered	 an	 average	
of	 17.99	 Mio	 nucleotides	 of	 the	 genome	 (~0.71%).	 Average	 read	
depth	across	sites	for	each	individual	ranged	from	a	minimum	of	3.1	
to	a	maximum	of	15.5,	with	an	average	of	8.6	per	individual.	Using	
this	data,	a	total	of	21,892	SNPs	passed	filtering	and	were	used	in	
the	genotype-	environment	analyses.	The	dataset	used	to	examine	
population	structure	consisted	of	2476	variable	sites	with	data	for	
all individuals.

3.2  |  Genetic diversity within populations

The	proportion	of	segregating	sites	(θW)	ranged	between	1.6‰	(Site	
N.se,	Figure 1)	and	4.8‰	(SE.ro)	with	an	average	of	2.9‰	(Table 1).	
The	 average	 number	 of	 pairwise	 differences	 (π)	 ranged	 between	
1.9‰	 (N.fi)	 and	 4.1‰	 (S.it),	 with	 an	 average	 of	 3.0‰.	 Observed	
heterozygosity	across	populations	ranged	from	1.2‰	(N.fi)	to	2.5‰	
(SE.ro).	 None	 of	 the	 genetic	 diversity	 measurements	 showed	 any	
clear	spatial	pattern.	Inbreeding	coefficients	(FIS)	were	overall	low.

3.3  |  Population structure

PCA	of	2476	loci	based	on	genotype	 likelihood	clustered	 individu-
als	broadly	based	on	geography	along	the	first	four	principal	com-
ponents	 (Figure 2),	which	together	explained	20.1%	of	the	genetic	
variation.

PC1	explained	9.4%	of	the	variation	and	sorted	the	populations	
roughly	by	geography	along	a	 latitudinal	gradient	 (except	for	N.se,	
for	which	individuals	had	similar	values	to	central	populations).	PC2	
(5.2%)	 separated	 populations	 along	 a	 longitudinal	 axis	 within	 re-
gions;	in	the	northern	populations,	the	population	west	of	the	Baltic	
sea	(N.se)	from	the	three	northern	populations	east	of	the	Baltic	sea	
(NE1-	3.fi),	and	within	Central	Europe,	the	three	geographically	close	
populations	 (C1.d3,	 C2-	3.cz)	 are	 from	 the	 two	 Eastern	 European	
populations	(CE.pl	and	SE.ro).	The	third	and	fourth	components	to-
gether	explained	5.5%	of	genetic	variation	and	separated	two	popu-
lations	from	the	other	ten:	the	northern	(N.se)	population	across	the	
Baltic	Sea	and	the	southern	population	on	the	other	side	of	the	Alps	
(S.it).	Similar	results	were	obtained	when	outlier	loci	were	excluded	
from	the	analysis	(Figure S2).

Admixture	analysis	revealed	a	clear	pattern	of	genetic	clusters	
(Figure 3).	Assuming	K = 2,	the	populations	in	the	southern	range	
of	 the	 distribution	 are	 separated	 from	 the	 other	 populations.	
Increasing	 to	K = 3	 additionally	 separated	 the	 three	 populations	
east	of	the	Baltic	(NE1-	3.fi),	increasing	to	K = 4	separated	S.it,	and	
to K = 5	 the	 Swedish	 population	 (N.se).	 Assuming	K = 10	 (having	
the	next	lowest	variance	of	likelihood),	clusters	mirrored	sampling	
locations,	except	 for	 the	 two	pairs	of	populations	with	 the	 least	

TA B L E  1 Overview	of	genetic	diversity	statistics	(mean	(standard	deviation))	for	each	of	the	12	sampled	Clethrionomys glareolus 
populations.

Symbol Site Country n θW (10−3) π (10−3) Tajima's D Heterozygosity (10−3) FIS

NE3 Finland	(.fi) 24 2.6	(1.6) 2.9	(2.0) 0.33	(1.06) 1.9	(0.07) 0.014	(0.030)

NE2 Finland	(.fi) 24 2.5	(1.5) 2.8	(2.1) 0.29	(1.05) 1.8	(0.06) 0.004	(0.011)

NE1 Finland	(.fi) 23 2.4	(1.5) 2.6	(2.1) 0.24	(1.08) 1.6	(0.13) 0.007	(0.014)

N Sweden	(.se) 24 1.6	(1.2) 1.9	(1.8) 0.32	(1.15) 1.2	(0.10) 0.003	(0.007)

CE Poland	(.pl) 22 2.8	(1.5) 3.2	(2.0) 0.45	(0.93) 2.1	(0.03) 0.016	(0.025)

SE Romania	(.ro) 23 4.8	(2.1) 4.0	(2.3) −0.67	(0.76) 2.5	(0.16) 0.028	(0.023)

C1 Germany	(.de) 24 2.6	(1.4) 3.1	(1.9) 0.57	(0.94) 2.0	(0.07) 0.025	(0.034)

C2 Czechia	(.cz) 24 3.5	(1.9) 3.4	(2.3) −0.19	(0.90) 2.1	(0.15) 0.012	(0.026)

C3 Czechia	(.cz) 23 3.3	(1.7) 3.4	(2.1) −0.01	(0.88) 2.1	(0.08) 0.018	(0.025)

S Italy	(.it) 22 3.5	(1.8) 4.1	(2.4) 0.52	(0.85) 2.5	(0.16) 0.012	(0.029)

SW1 France	(.fr) 21 2.9	(1.4) 3.3	(2.0) 0.44	(0.93) 2.1	(0.11) 0.006	(0.012)

SW2 France	(.fr) 22 2.0	(1.3) 2.5	(2.0) 0.59	(1.06) 1.6	(0.13) 0.003	(0.011)

Note:	Sample	size	(n),	Watterson's	theta	(θW),	Tajima's	pi	(π),	Tajima's	D,	heterozygosity	–	the	proportion	of	heterozygous	genotypes	and	the	average	
population	inbreeding	coefficients	(FIS)	are	displayed.
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    |  7 of 19FOLKERTSMA et al.

geographic	distance,	 the	southern	Finnish	populations	 forming	a	
single	cluster,	and	the	Central	populations	(C2.cz	and	C3.cz)	with	
only	some	degree	of	admixture	suggested,	mostly	in	the	Romanian	
population	(SE.ro).

A	 similar	 pattern	 emerges	 from	 the	 pairwise	 population	 FST 
estimates	 (PPF),	which	 revealed	moderate	 to	high	 levels	 of	 differ-
entiation	 between	 populations	 (Table S5).	 PPF	 ranged	 between	
0.035	 (C1.cz	vs.	C2.cz)	 and	0.555	 (N.se	and	SW1.	fr)	with	an	aver-
age	 fixation	 index	 of	 0.269	 (SD = 0.12).	 PPF	 corresponded	 well	
with	the	geographic	proximity	of	populations	(Mantel	tests	genetic	
and geographic distance correlation: r = .47,	p = .002),	 suggesting	 a	
strong	 spatial	 pattern	of	 isolation	by	distance.	 In	 accordance	with	
previous	results,	the	population	from	Sweden	(east	of	the	Baltic	Sea)	
was	more	 similar	 to	 the	 central	European	populations	 than	 to	 the	
North-	Eastern	populations.	We	did	not	find	evidence	for	IBE	using	
individual	climate	variables	or	climate-	based	principal	components,	
as	there	appeared	to	be	no	significant	association	between	environ-
mental	 and	 genetic	 distance	when	 controlling	 for	 geographic	 dis-
tance	(r	ranging	from	.12	to	.46,	all	q > .05;	Table S6).

3.4  |  Candidate loci associated with climate

The	univariate	 approaches	 identified	 a	 total	 of	 975	 loci	 associated	
with	 climate	 variables.	 To	 run	 LFMM,	we	 first	 determined	 the	 ap-
propriate	 number	 of	 latent	 factors	 using	 snmf.	 The	 snmf	 analysis	
returned	 the	 lowest	CE	value	 for	K = 10	 (0.519),	 followed	by	K = 11	
(0.520)	and	K = 12	(0.521)	(Figure S4).	As	higher	values	of	K resulted 
in	a	higher	number	of	outlier	loci,	we	only	report	outlier	loci	detected	
using K = 10	as	a	conservative	approach.	LFMM	identified	a	total	of	
497	outlier	loci,	among	which	134	were	associated	with	PC1	and	377	
with	PC2.	Bayenv2	identified	a	total	of	631	outlier	loci;	of	these,	283	
loci	were	associated	with	PC1	and	354	loci	were	associated	with	PC2.	

Of	the	outlier	loci,	152	were	identified	by	both	LFMM	and	Bayenv2,	
corresponding	to	15.6%	overlap	between	the	two	methods.	The	mul-
tivariate	RDA	 identified	485	outlier	 loci	 associated	with	 the	 first	2	
RDA	axes.	Among	these,	69	loci	were	also	identified	by	univariate	ap-
proaches.	Thus,	5.0%	of	loci	were	identified	by	both	approaches.	The	
RDA	without	correcting	for	population	structure	identified	108	loci	
as	outliers,	with	only	eight	 loci	 identified	by	univariate	approaches	
as	 well	 (0.8%	 overlap	 with	 univariate	 methods)	 and	 an	 overlap	 of	
only	four	loci	with	the	RDA	with	correction	for	population	structure.	
Overall,	a	total	of	1392	outlier	loci	were	associated	with	climate	using	
all	methods	(Venn	Diagrams	Figure S3).	We	considered	213	loci	de-
tected	by	at	least	two	methods	as	strong	candidates.

3.5  |  Annotation of candidate loci and 
gene ontology

Of	the	213	candidate	loci,	209	were	successfully	aligned	to	the	M. 
ochrogaster	genome.	Eight	loci	were	located	in	exons,	86	in	introns,	
and	115	in	intergenic	regions.	In	total,	we	identified	74	genes	with	
candidate	loci.	Some	genes	contained	several	loci	(Table S7).	Several	
of	these	genes	were	associated	with	functions	in	lipid	metabolism,	
energy	homeostasis,	and	immunity	(Table 2).	Among	GO	terms	as-
sociated	with	the	genes,	six	were	significantly	enriched	in	our	data	
set,	including	“regulation	of	respiratory	burst”	and	“dicarboxylic	acid	
transport”	(Table S8).

3.6  |  Variance partitioning and identification of 
important climate variables

We	partitioned	genetic	 variation	 into	 components	of	population	
structure	 and	 climate	 using	 RDA.	 Separate	 RDAs	 with	 neutral	

F I G U R E  2 Principal	component	analysis	of	276	C. glareolus	individuals	sampled	from	12	populations	across	Europe	using	2476	SNPs	
based	on	genotype	likelihood.	With	the	percentage	of	variation	explained	for	each	component	displayed	on	the	axes,	together,	the	four	
components	explain	20.1%	of	the	variation.	Each	circle	represents	an	individual,	colours	correspond	to	regions	and	sites.	C,	Central;	E,	
Eastern;	N,	North;	S,	South;	W,	Western;	.fi,	Finland;	.se,	Sweden;	.pl,	Poland;	.cz,	Czechia;	.de,	Germany;	it,	Italy;	 .fr,	France;	.ro,	Romania.
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genetic	variation	 (20,500	SNPs)	as	 the	 response	variable	and	ei-
ther	population	structure	or	climate	as	explanatory	variables	both	
explained	 a	 significant	 proportion	 of	 genetic	 variation	 as	 meas-
ured	by	 their	 adjusted	R2	 (population	 structure:	66.9%,	p < .001;	
climate:	33.1%,	p = .009).	Using	RDA,	we	partitioned	this	into	their	
exclusive	 contributions.	 This	 showed	 that	 population	 structure	
when	controlling	for	the	effects	of	climate	still	explained	a	signifi-
cant	proportion	of	genetic	variation	(38.2%,	p = .01),	while	climate	
when	 controlling	 for	 the	 effects	of	 population	 structure	did	not	
anymore	(4.4%,	p > .28)	(Table S9).	Together,	population	structure	
and	climate	explained	71.3%	of	genetic	variation	 (thus,	28.7%	of	
variation	 remained	 unexplained),	 of	 which	 population	 structure	
explained	 33.0%	 and	 climate	 16.7%.	 Thus,	 the	 majority	 of	 the	
variation	 explained	 was	 shared	 between	 population	 structure	
and	climate	(50.3%)	and	could	not	be	separated	between	the	two	
(Table S10).	Each	climate	variable	independently	explained	only	a	
small	 amount	of	 the	 total	 genetic	 variation	 in	 the	different	 sub-
sets	of	outlier	loci	and	their	marginal	effects	were	non-	significant	
(Figure 4; Table 3).

Results	 from	 the	RDAs	performed	on	 the	 different	 subsets	 of	
outliers	vary	among	the	methods	used.	A	significant	proportion	of	
variation	 in	 the	 subset	 of	 outliers	 detected	 by	 RDA	 could	 be	 at-
tributed	exclusively	to	climate	(46.7%,	p = .023),	and	the	proportion	
of	variation	that	was	shared	between	both	components	was	reduced	
to	 9.8%.	While	 in	 the	 subset	 of	 outliers	 detected	 by	 LFMM	 that	
were	associated	with	PC1,	a	 total	of	63.7%	variation	could	not	be	
attributed	to	either	component,	and	only	18.6%	could	be	attributed	
exclusively	to	climate	(Tables S9 and S10).

Most	 independent	 climate	 variables	 were	 not	 significantly	 as-
sociated	with	genetic	variation,	 and	 the	overall	degree	of	associa-
tion	differed	per	outlier	subset.	However,	annual	mean	temperature	
was	significantly	associated	with	genetic	variation	 in	the	subset	of	
outliers	 detected	 by	 RDA	 (52.0%,	 p = .034).	Within	 the	 subset	 of	
candidate	 outliers,	 annual	mean	 temperature	was	 associated	with	
23.1%	of	genetic	variation	(p = .093)	followed	by	annual	precipitation	
(12.8%,	p > .1).	A	similar	pattern	is	visible	in	the	results	of	the	vari-
able	with	the	highest	influence	per	outlier	marker.	Within	the	subset	
of	candidate	 loci,	 annual	mean	 temperature	 is	associated	with	 the	

F I G U R E  3 Admixture	proportions	were	estimated	using	NgsAdmix	based	on	a	subset	of	2476	SNPs	where	no	individual	had	missing	
data.	Using	different	numbers	of	ancestral	populations	(K = 2–12).	Each	individual	is	represented	by	a	column	with	colours	corresponding	to	
the	proportions	of	their	ancestry	components.	Vertical	black	bars	separate	putative	populations	based	on	sampling	location.	C,	Central;	E,	
Eastern;	N,	North;	S,	South;	W,	Western;	.fi,	Finland;	.se,	Sweden;	.pl,	Poland;	.cz,	Czechia;	.de,	Germany;	it,	Italy;	.fr,	France;	 .ro,	Romania.
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    |  9 of 19FOLKERTSMA et al.

TA B L E  2 Candidate	genes	were	detected	by	at	least	two	genome	scan	methods	and	associated	with	lipid	metabolism,	energy	
homeostasis,	and	immunity.

Locus and method Gene, putative function and relevance References

NC_022011.1_19197181 Zinc	finger	homeobox	3	(Zfhx3) Balzani	et	al.	(2016)

L1,	L2,	Ba1 Transcription	factor	expressed	in	the	suprachiasmatic	nucleus	with	a	
role	in	circadian	rhythms

NC_022013.1_77189997 Basic	leucine	zipper	ATF-	like	transcription	factor	3	(Batf3) Murphy	et	al.	(2013)

L1,	Ba1,	Ba2,	RDA Transcription	factor	involved	in	the	differentiation	of	T	helper	cells

NC_022013.1_78476899 Potassium	voltage-	gated	channel	subfamily	H	member	1	(Kcnh1) Zhang	et	al.	(2013)

L2,	Ba2 Involved	in	adipogenic	differentiation	and	production

NC_022017.1_17053779 ADAM	metallopeptidase	with	thrombospondin	type	1	motif	20	
(Adamts20)

Silver	et	al.	(2008)

L2,	Ba2 Required	for	melanoblast	survival,	responsible	for	coat	colour	
variation

NC_022018.1_59867563 Neurotrophic	receptor	tyrosine	kinase	2	(Ntrk2) Xu	&	Xie	(2016),	Houtz	et	al.	(2021)

L2,	Ba2,	RDA Critical	for	maintaining	energy	homeostasis	by	controlling	food	
intake	and	body	weight

NC_022024.1_33246556 Insulin-	like	growth	factor	1	(Igf1) Baker	et	al.	(1993),	Laron	(2001)

L2,	Ba2 Involved	in	energy	metabolism	and	mediating	growth	and	
development

NC_022027.1_54997482 Leucine	rich	repeat	containing	8	VRAC	subunit	C	(Lrrc8c) Tominaga	et	al.	(2004)

L2,	RDA Associated	with	early	stage	adipocyte	differentiation

NC_022028.1_49631929 Dynein	axonemal	heavy	chain	8	(Dnah8) Söhle	et	al.	(2012)

L2,	Ba2 Axonemal	dynein	influencing	lipid	metabolism,	possibly	by	reg.	of	
inflammatory	processes

NC_022031.1_30606927 BTB	domain	and	CNC	homolog	2	(Bach2) Kuwahara	et	al.	(2016),	Yamashita	&	
Kuwahara		(2018)L1,	L2,	Ba2,	RDA Transcription	factor	that	acts	as	a	broad	regulator	of	the	immune	

homeostasis

NW_004949096.1_35517029 Biliverdin	reductase	A	(Blvra) Barañano	et	al.	(2002)

L2,	Ba2 Facilitates	conversion	of	biliverdin	to	bilirubin	protecting	against	cell	
damage

NW_004949099.1_1813079 Aprataxin	and	PNKP-	like	factor	(Aplf) Grundy	et	al.	(2012)

L1,	Ba1 Involved	in	double-	strand	DNA	break	repair	by	promoting	non-	
homologous	end	joining

NW_004949106.1_3445183 Phospholipase	C	like	1	(Prip) Oue	et	al.	(2016)

Ba1,	RDA Modulates	fat	metabolism	and	regulates	non-	shivering	
thermogenesis	in	brown	adipose	tissue

NW_004949106.1_7957839 Signal	transducer	and	activator	of	transcription	4	(Stat4) Kaplan	(2005),	Kanematsu	et	al.	(2019)

L2,	Ba2 Encodes	a	transcription	factor	responsible	for	T-	helper	cell	
development

NC_022012.1_47630215 Exophilin	5	(Exph5) McGrath	et	al.	(2012),	Yudin	et	al.	(2017)

LPC1,	BPC1,	RDA Plays	a	role	in	intracellular	vesicle	trafficking,	mutations	in	this	gene	
lead	to	skin	fragility

NC_022030.1_4789630 Solute	carrier	family	2	member	12	(Slc2a12) Gil-	Iturbe	et	al.	(2019),	
Stepanov	et	al.	(2017)BPC1,	RDA Contributes	to	insulin-	stimulated	glucose	uptake	in	skeletal	muscle	

and adipose tissue

NC_022013.1_70231999 Dual	specificity	phosphatase	10	(Dusp10) Zhang	et	al.	(2004)

BPC1,	RDA Regulator	of	both	innate	and	adaptive	immune	resp.,	req.	for	T-	cell	
activation	and	proliferation

NW_004949164.1_394094 Engulfment	and	cell	motility	1	(Elmo1) Sarkar	et	al.	(2017)

BPC1,	RDA Defence	mechanisms	against	invading	pathogens	by	inducing	
inflammatory	responses

Note:	Locus	refers	to	the	location	on	the	C. ochrogaster	reference	genome	(Chromosome_base	position).	Method	of	outlier	detection	(L:	LFMM,	Ba:	
Bayenv2,	RDA:	Redundancy	Analysis).
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10 of 19  |     FOLKERTSMA et al.

highest	proportion	of	outliers	 (28.6%),	 followed	by	annual	precipi-
tation	(27.7%).	Although	there	is	variation	between	subsets,	annual	
mean	temperature	is	the	variable	with	the	highest	influence	on	each	
marker	 in	most	of	 them,	while	 annual	 precipitation	 is	 the	variable	
with	the	second	highest	influence	on	markers	(Figure 4b; Table S11).

3.7  |  Polygenic scores

Correlations	 between	 additive	 polygenic	 scores	 calculated	 using	
candidate	 loci	and	the	corresponding	climate	variable	were	all	sig-
nificant	(p < .001),	and	adjusted	R2	values	ranged	between	.34	(mean	
diurnal	 range)	 and	 .86	 (temperature	 seasonality)	 (Figure 5).	 The	
correlation	 between	 polygenic	 scores	 and	 corresponding	 climate	
variables	was	best	represented	by	quadratic	models,	except	for	tem-
perature	seasonality,	which	was	best	represented	by	a	linear	model.	
The	significance	and	the	adjusted	R2	of	the	correlations	calculated	

for	 different	 subsets	 of	 outliers	 generated	 similar	 results	 but	 dif-
fered	slightly	across	subsets	(Table S12).

4  |  DISCUSSION

The	aim	of	the	present	study	was	to	investigate	genome-	wide	pat-
terns	of	adaptive	variation	associated	with	climate	in	European	bank	
vole	populations.	Searching	for	potentially	adaptive	 loci	 in	a	multi-
variate	framework	is	a	powerful	approach,	especially	because	many	
adaptive	traits	are	likely	to	be	polygenic	in	nature	(Barghi	et	al.,	2020; 
Wellenreuther	&	Hansson,	2016).	We	used	ddRAD	sequencing	and	
a	combination	of	landscape	genomic	approaches	to	uncover	climate-	
related	evolutionary	processes	 in	 the	bank	vole.	We	characterized	
adaptive	genetic	variation	by	combining	the	results	of	two	univari-
ate	and	one	multivariate	GEA	methods	to	detect	outlier	loci	corre-
lated	with	climate.	We	identified	74	genes	of	interest,	and	functional	

F I G U R E  4 Results	of	the	redundancy	analysis	with	(a)	RDA	using	20,500	SNPs	representing	neutral	genetic	variation	(in	gray)	and	five	
climate	variables	without	correction	for	population	structure.	(b)	RDA	with	correction	for	population	structure	showing	the	485	SNPs	
identified	as	outliers	by	RDA	with	colour	according	to	the	most	highly	correlated	climate	variable.	Sampling	locations	are	represented	
by	coloured	circles.	Climate	variables	are	represented	by	solid	blue	arrows	(AnMTemp:	Annual	mean	temperature,	MDR:	mean	diurnal	
temperature	range,	TempSeas:	Temperature	seasonality,	AnPrec:	Annual	precipitation,	PrecSeas:	Precipitation	seasonality)	and	control	
using	the	four	axis	of	population	structure	(Ps1-	4)	is	indicated	using	dashed	blue	lines.	The	arrows'	length	represents	the	amount	of	genetic	
variation	explained	by	each	variable	on	each	axis,	and	their	angle	represents	the	correlation	between	them.	The	proportion	of	total	variance	
explained	by	each	RDA	axis	is	indicated	in	percent	along	the	axis.	Abbreviations	for	populations	according	to	Figure 1.
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TA B L E  3 Amount	of	genetic	variation	explained	by	each	climate	variable	after	removing	the	effect	of	the	other	variables	including	
population structure.

Variable

20,500 neutral loci

p- value

485 RDA outlier loci

p- valueR2 Adjusted R2 R2 Adjusted R2

Annual	mean	temperature	(AnMTemp) .04 .06 .284 .17 .52 .034*

Temperature	seasonality	(TempSeas) .03 .01 .432 .04 .07 .228

Mean	diurnal	temperature	range	(MDR) .04 .06 .267 .12 .35 .058

Annual	precipitation	(AnPrec) .04 .05 .290 .08 .20 .128

Precipitation	Seasonality	(PrecSeas) .04 .04 .290 .10 .29 .067

Note:	Results	are	based	on	the	RDA	analysis	of	climate	variables	after	controlling	for	population	structure	for	20,500	neutral	loci	and	485	outlier	loci	
identified	by	the	RDA	analysis.	*p < .05
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    |  11 of 19FOLKERTSMA et al.

annotation	 suggested	 that	 energy	 homeostasis	 and	 response	 to	
pathogen	infection	are	important	targets	of	climate-	mediated	selec-
tion	in	the	bank	vole.	In	addition,	we	have	shown	that	both	popula-
tion	history	and	climate	play	 important	 roles	 in	explaining	genetic	
differentiation	across	the	bank	vole	range.	Genetic	variation	among	
candidate	loci	was	mainly	associated	with	variation	in	annual	mean	
temperature,	highlighting	the	importance	of	this	climatic	variable	in	
bank	vole	adaptation.

We	attempted	 to	distinguish	 loci	with	 signals	of	 selection	 that	
correlated	with	climate	from	those	loci	that	exhibit	patterns	of	neu-
tral	 genetic	 differentiation.	 Correcting	 for	 the	 patterns	 of	 neutral	
population	structure	is	an	important	concern	when	identifying	can-
didate	loci	subject	to	selection.	Proper	correction	can	help	to	avoid	
the	possible	spurious	detection	of	candidate	 loci	whose	allele	 fre-
quencies	resemble	signals	of	selection	but	are	the	result	of	neutral	
processes	due	to	the	shared	history	of	populations	(de	Villemereuil	
et	 al.,	2014).	 Separating	 loci	 under	 selection	 from	neutral	 loci	 be-
comes	 increasingly	harder	when	 the	selective	gradients	are	highly	
correlated	with	neutral	patterns	of	population	structure	(Whitlock	&	
Lotterhos,	2015).	In	such	a	situation,	the	assignment	of	genetic	vari-
ation	will	be	confounded	between	neutral	population	structure	and	

selective	forces.	Depending	on	the	correction	method	used	for	pop-
ulation	structure,	this	can	lead	to	an	increase	in	false-	negative	rates	
(when	variation	 is	excessively	assigned	 to	population	structure)	or	
to	an	 increase	 in	false-	positive	rates	 (when	variation	 is	excessively	
assigned	 to	 selective	 forces;	 Forester	 et	 al.,	 2018;	 Whitlock	 &	
Lotterhos,	2015).	We	attempted	to	separate	genome-	wide	patterns	
of	 variation	 into	 effects	 of	 neutral	 population	 structure	 and	 local	
adaptation	 (due	to	climate).	Population	structure	explained	a	 large	
part	of	genomic	variation,	resulting	 in	a	strong	pattern	of	 isolation	
by	 distance	 detected	 using	 a	Mantel	 test.	 Similarly,	 in	 RDAs	 pop-
ulation	 structure	 still	 explained	 a	 significant	 amount	 of	 variation	
while	controlling	for	the	effects	of	climate,	whereas	climate	did	not	
when	 controlling	 for	 population	 structure.	 Moreover,	 population	
structure	explained	twice	as	much	of	the	total	genetic	variation	as	
did	 climate.	 These	 results	 are	 not	 surprising	 as	 bank	 vole	 popula-
tions	 experience	 recurring	 population	 crashes	 and	 effective	 gene	
flow	between	populations	is	generally	low,	which	results	in	isolation	
by	distance	across	both	smaller	and	 larger	geographic	scales	 (Aars	
et	al.,	1998;	Gerlach	&	Musolf,	2000;	Guivier	et	al.,	2011;	Redeker	
et	 al.,	2006).	 Also,	 bank	 vole	 populations	 have	 strongly	 expanded	
their	range	since	the	last	glaciation	(for	review	(Kotlik	et	al.,	2022)).	

F I G U R E  5 Correlations	between	individual	additive	polygenic	scores	(symbols)	based	on	candidate	loci	and	each	of	the	five	
corresponding	explanatory	climate	variables	determined	per	sampling	site:	Annual	mean	temperature	(a),	Annual	precipitation	(b),	
Temperature	seasonality	(c),	Mean	diurnal	temperature	range	(d),	and	Precipitation	seasonality	(e).	The	lines	represent	the	regression	
line	from	the	model,	while	the	shaded	areas	represent	the	95%	confidence	interval.	The	variance	explained	for	the	linear	(c)	or	quadratic	
regression	(a,	b,	d,	e)	fits	is	given	in	the	respective	upper-	left	corner.	**p < .01;	***p < .001.
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Thus,	a	strong	pattern	of	IBD	is	to	be	expected	for	this	species.	At	
the	same	time,	we	did	not	find	evidence	for	IBE	using	partial	Mantel	
tests	with	 individual	 climate	variables,	 and	climate	did	not	explain	
significant	amounts	of	variation	in	an	RDA	that	controlled	for	popu-
lation	structure.	Maybe	not	unexpectedly,	these	results	suggest	that	
population	history	 is	a	stronger	driver	of	genetic	differentiation	 in	
this	species	than	environmental	factors.	However,	it	is	generally	dif-
ficult	to	distinguish	a	pattern	of	IBE	above	the	background	pattern	of	
IBD	when	there	is	a	strong	correlation	between	geographic	distance	
and	environmental	distance	(Wang	&	Bradburst,	2014).	The	signifi-
cant	correlation	between	geographic	distance	and	climatic	distance	
(significant	for	PC1	but	not	for	PC2),	together	with	the	large	amount	
of	variation	 that	could	not	be	assigned	 to	either	population	struc-
ture	or	climate	may	have	prevented	us	from	detecting	signals	of	IBE	
above	those	of	population	structure.	A	large	proportion	of	genetic	
variation	(50.3%)	could	not	be	attributed	to	the	exclusive	effects	of	
either	climate	or	population	structure	alone,	indicating	that	a	large	
proportion	of	genomic	variation	associated	with	climate,	may	be	spa-
tially	correlated	with	population	structure.	The	phylogeography	of	C. 
glareolus	is	marked	by	distinct	genetic	lineages,	which	resulted	from	
survival	within	 glacial	 refugia	 and	 recolonization	 of	 Europe	 at	 the	
end	of	the	last	glaciation	(Filipi	et	al.,	2015;	Horniková	et	al.,	2021; 
Kotlik	et	al.,	2006;	Marková	et	al.,	2020).	Post-	glacial	expansion	from	
southern	 refugia	may	 result	 in	 clines	 of	 neutral	 allele	 frequencies	
coinciding	 with	 climate	 variables	 related	 to	 latitude	 (Lotterhos	 &	
Whitlock,	2014;	Rellstab	et	al.,	2015)	making	it	difficult	to	separate	
the	effects	of	IBE	and	IBD	from	one	another.	Disentangling	these	ef-
fects	would	require	additional	sampling	of	more	populations	across	
the	species	range,	covering	gradients	within	glacial	refugia	origins.	
In	spite	of	these	limitations,	GEA	analyses	were	still	able	to	identify	
loci	putatively	under	divergent	selection,	and	a	RDA	on	the	subset	
of	candidate	loci	was	able	to	exclusively	attribute	a	proportion	of	the	
genetic	variation	to	climate.

There	was	 reasonable	overlap	 in	outlier	 loci	 detected	by	 the	
univariate	GEA	methods	LFMM	and	Bayenv2,	which	was	consis-
tent	with	 results	 observed	 in	 other	 empirical	 studies	 using	 such	
methods	 (Harrison	 et	 al.,	 2017;	 Prates	 et	 al.,	 2018;	 Pritchard	
et	al.,	2018).	While	the	number	of	detected	outlier	loci	associated	
with	PC2	was	similar	between	LFMM	and	Bayenv2	(377	vs.	354),	
the	number	of	outlier	loci	associated	with	PC1	differed	markedly	
between	methods	(134	vs.	283).	This	difference	may	be	explained	
by	a	stronger	collinearity	between	PC1	and	population	structure	
than	that	of	PC2.	Surprisingly,	the	percentage	overlap	of	loci	de-
tected	 by	 both	 methods	 did	 not	 differ	 between	 PC1	 and	 PC2.	
Suggesting	that	LFMM	is	more	conservative	than	Bayenv2	when	
the selective gradient and population structure are correlated 
without	 affecting	 the	 agreement	 between	 both	 methods.	 The	
overlap	between	univariate	methods	and	the	RDA	with	correction	
for	population	structure	was	relatively	small,	with	only	5.1%	of	the	
loci	detected	by	the	RDA	also	being	detected	by	LFMM	or	Bayenv2.	
GEA	methods	identify	loci	under	selection	after	controlling	for	the	
effect	of	neutral	drift,	and	the	performance	of	each	method	de-
pends	on	the	sampling	design	and	assumed	demographic	history.	

This	 can	 lead	 to	 little	 overlap	 between	 methods	 (Whitlock	 &	
Lotterhos,	2015;	de	Villemereuil	et	al.,	2014).	Population	structure	
and	climate	were	highly	collinear	 in	our	data	set,	which	makes	 it	
harder	for	GEA	methods	to	separate	neutral	 loci	from	loci	under	
selection	(Whitlock	&	Lotterhos,	2015).	LFMM,	Bayenv2,	and	RDA	
differed	 in	 their	 ability	 to	 separate	 this	 from	our	 data.	 The	pro-
portion	 of	 variation	 assigned	 exclusively	 to	 climate	 ranged	 from	
18.6%	to	46.7%,	and	 the	proportion	shared	between	population	
structure	 and	 climate	 ranged	 from	9.8%	 to	63.7%.	Compared	 to	
the	subset	of	neutral	 loci,	the	proportion	of	shared	variation	de-
creased,	and	a	larger	proportion	could	be	exclusively	assigned	to	
climate	 in	the	subset	of	candidate	 loci.	A	simulation-	based	study	
that	 tested	 the	 performance	 of	 univariate	 and	multivariate	GEA	
methods	showed	that	the	performance	of	these	approaches	var-
ied	depending	on	the	demographic	history	and	strength	of	selec-
tion	 (Forester	et	al.,	2018)	and	that	RDA	may	be	more	robust	 to	
our	 sampling	 design	 that	 does	 not	 maximize	 environmental	 dif-
ferentiation.	The	same	study	also	suggests	that	combining	results	
from	univariate	and	multivariate	approaches	may	help	to	increase	
power	and	reduce	false-	positive	rates.	As	such,	our	study	provides	
an	example	of	using	a	conservative	approach	to	outlier	detection	
by	combining	the	results	of	RDA	with	GEA	methods	that	use	dif-
ferent	 methods	 to	 correct	 for	 neutral	 genetic	 differentiation	 in	
highly structured populations.

Our	 results	 suggest	 that	 annual	 mean	 temperature	 is	 an	 im-
portant	 driver	 of	 adaptive	 genomic	 variation	 and	 thus	may	 be	 an	
important	 selection	 pressure	 influencing	 adaptation	 in	 bank	 vole	
populations	(Tiffin	&	Ross-	Ibarra,	2014),	as	reflected	by	the	strong	
association	between	temperature	and	polygenic	scores	discovered.	
The	 latter	 implies	 that	different	alleles	are	maintained	 in	different	
thermal	environments,	suggesting	the	presence	of	climate-	mediated	
selection	pressure.	Temperature	is	one	of	the	most	important	envi-
ronmental	factors	affecting	physiological	processes	such	as	aerobic	
scope	(Pörtner,	2001)	and	metabolism	(Lovegrove,	2003),	which	in	
turn	affect	a	variety	of	life	history	traits	(Simons	et	al.,	2011;	Tökölyi	
et	al.,	2014).	Numerous	studies	have	associated	clinal	temperature	
variation	and	genome	scans	and	found	signals	of	selection	in	genes	
related	to	energy	homeostasis	and	metabolism	in	endotherms	(e.g.,	
Andrew	 et	 al.,	2018;	 Fumagalli	 et	 al.,	2015;	Hancock	 et	 al.,	2011; 
Harris	&	Munshi-	South,	2017;	Harrison	et	al.,	2017;	Lv	et	al.,	2014).	
This	suggests	that	temperature	is	one	of	the	most	 important	envi-
ronmental	 variables	 driving	 local	 adaptation.	 Indeed,	 temperature	
has	been	linked	to	adaptive	genetic	variation	in	other	small	mammals,	
such	 as	 populations	 of	 the	 recently	 introduced	 house	 mouse	 (M. 
musculus)	along	a	latitudinal	cline	in	eastern	North	America	(Phifer-	
Rixey	et	al.,	2018)	and	populations	of	the	climate-	sensitive	American	
pika	 (Ochotona princeps)	 along	 an	 altitudinal	 cline	 (Waterhouse	
et	al.,	2018).	The	distribution	and	abundance	of	C. glareolus	from	the	
Eastern	lineage	in	a	contact	zone	with	the	Carpathian	lineages	cor-
related	negatively	with	July	temperature,	suggesting	that	 individu-
als	from	the	Eastern	lineage	are	better	adapted	to	cooler	conditions	
(Tarnowska	et	al.,	2016),	supporting	temperature	as	a	driver	of	adap-
tive	genetic	variation	in	the	bank	vole.
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Artificial	selection	experiments	for	higher	aerobic	exercise	per-
formance	in	bank	voles	resulted	in	an	increase	in	resting	metabolic	
rate	and	thus	resulted	 in	 the	development	of	 increased	cold	toler-
ance	as	a	side	effect	(Sadowska	et	al.,	2015;	Stawski	et	al.,	2017).	This	
argues	for	a	genetic	basis	for	thermal	adaptation	in	bank	voles	that	
may	allow	individuals	under	natural	conditions	to	adapt	to	a	colder	
environment	 by	 having	 more	 energy	 available	 for	 thermogenesis	
(Stawski	et	al.,	2017).	Although	the	selection	regime	increased	cold	
tolerance,	 it	also	decreased	the	ability	to	thermoregulate	at	higher	
temperatures	(Grosiak	et	al.,	2020).	This	suggests	that	warmer	tem-
peratures	may	also	be	difficult	for	small	mammals	to	cope	with,	as	
this	can	easily	lead	to	overheating	(Rezende	et	al.,	2004).	This	in	turn	
could	also	 lead	 to	specific	metabolic	adaptations	 in	populations	 in	
warmer	climates	due	to	increased	selection	pressure.	In	this	study,	
AMT	differed	between	−1.4°C	(NE3.fi)	and	12.4°C	(S.it)	among	pop-
ulations.	Thus,	bank	vole	populations	in	Europe	are	exposed	to	quite	
different	 environmental	 temperatures,	 likely	 resulting	 in	 different	
energetic	 requirements	 and	 adaptive	 genetic	 divergence	 in	meta-
bolic	traits	throughout	the	species'	range.

Different	populations	that	are	exposed	to	different	local	climatic	
conditions	 not	 only	 have	 different	 energy	 requirements	 but	 also	
have	to	cope	with	different	diets	and	different	pathogen	or	predator	
communities.	We	have	identified	a	number	of	promising	candidate	
genes	 that	 could	 be	 considered	 for	 future	 research	 aimed	 at	 link-
ing	phenotypic	and	genotypic	variation.	The	function	of	these	can-
didate genes could provide insight into the physiological processes 
that	may	have	undergone	selection	across	climatic	gradients.	In	this	
context,	we	have	identified	a	number	of	candidate	genes	related	to	
lipid	metabolism	and	the	immune	system	that	appear	to	be	subject	
to	temperature-	related	selection.

Adipose	 tissue	 plays	 an	 important	 role	 in	 energy	 homeostasis	
and	 accounts	 for	 a	 large	 portion	 of	 the	 energy	 reserves	 of	 small	
mammals	 (Birsoy	et	al.,	2013;	Sethi	&	Vidal-	Puig,	2007).	 In	partic-
ular,	brown	adipose	tissue	 is	 important	for	metabolic	heat	produc-
tion	 through	 non-	shivering	 thermogenesis	 under	 cold	 conditions	
(Cannon	 &	 Nedergaard,	 2004;	 Klaus	 et	 al.,	 1988).	 Two	 candidate	
genes	associated	with	 lipid	metabolism	are	 therefore	of	particular	
interest: PRIP,	which	encodes	an	enzyme	that	modulates	 lipid	me-
tabolism	and	serves	as	a	signalling	molecule	for	non-	shivering	ther-
mogenesis	(Kanematsu	et	al.,	2019;	Oue	et	al.,	2016),	and	LRRC8C,	
which	 encodes	 a	 structural	 component	 of	 the	 volume-	regulated	
anion channel in adipocytes and is associated with the early phase 
of	 adipocyte	 differentiation	 and	 diet-	induced	 obesity	 (Hayashi	
et	al.,	2011;	Tominaga	et	al.,	2004).

Other	candidate	genes	with	functions	related	to	energy	homeo-
stasis include NTRK2,	which	encodes	the	TrkB-	receptor	critical	for	
maintaining	energy	homeostasis	by	controlling	food	intake	and	body	
weight	 and	 is	 responsible	 for	 regulating	 adaptive	 thermogenesis	
(Houtz	et	al.,	2021;	Xu	&	Xie,	2016).	Finally,	the	product	of	IGF1 has 
wide-	ranging	 effects	 on	metabolism	 by	 coordinating	 protein,	 car-
bohydrate,	and	lipid	metabolism	in	a	variety	of	different	cell	types	
(Baker	 et	 al.,	1993;	 Laron,	2001).	Moreover,	 several	 of	 the	 candi-
date	genes	are	associated	with	obesity	in	humans,	including	DNAH8 

(Söhle	et	al.,	2012),	IGF1	(Berryman	et	al.,	2013),	KCNH1	(Vasconcelos	
et	al.,	2016),	LRRC8C	(Hayashi	et	al.,	2011),	NTRK2	(Gray	et	al.,	2007),	
and PRIP	(Yamawaki	et	al.,	2017)	suggesting	that	they	play	a	role	in	
controlling	energy	homeostasis	and	potentially	differences	in	body	
fat	levels	across	environments.

The	results	also	showed	a	significant	enrichment	of	genes	related	
to	the	regulation	of	the	respiratory	burst.	The	respiratory	burst	plays	
an	important	role	in	the	immune	system.	It	is	a	crucial	reaction	that	
occurs	in	phagocytes	to	degrade	internalized	pathogens	after	phago-
cytosis	 (Iles	&	Forman,	2002).	 In	 this	context,	we	have	 identified	a	
number	of	candidate	genes	that	play	important	roles	in	the	immune	
system.	For	example,	the	product	of	DUSP10,	which	was	associated	
with	 this	significant	GO	term,	plays	an	 important	 role	 in	 regulating	
both	 innate	and	adaptive	 immune	responses	through	 its	 regulatory	
influence	 on	 the	 MAPK	 pathway	 (Arthur	 &	 Ley,	 2013;	 Seternes	
et	 al.,	2019).	 Two	 other	 candidate	 genes,	BATF3 and BACH2,	 both	
encode	 transcription	 factors	 that	 regulate	 T-	helper	 cell	 function.	
Interestingly,	they	also	interact	with	each	other	to	bind	to	regulatory	
regions	of	cytokine	gene	loci	and	prevent	excessive	T-	helper	response	
(Kuwahara	et	al.,	2016;	Yamashita	&	Kuwahara,	2018).	Another	candi-
date	gene	of	interest	is	STAT4.	This	gene	encodes	a	transcription	fac-
tor	responsible	for	the	differentiation	of	T	helper	cells	(Kaplan,	2005)	
and	is	part	of	the	JAK–STAT	signalling	pathway	that	controls	the	im-
mune	responses	to	viral	infections	(Villarino	et	al.,	2017).	JAK–STAT	is	
one	of	the	significantly	enriched	signalling	pathways	associated	with	
Puumala	hantavirus	infection	in	the	bank	vole	(Rohfritsch	et	al.,	2018).	
It	has	also	been	found	to	play	a	role	in	the	immune	response	to	the	Sin	
Nombre	hantavirus	in	deer	mice	(Peromyscus maniculatus)	(Schountz	
et	al.,	2012,	2014).	This	suggests	that	alterations	in	this	gene	may	be	
related	to	Puumala	hantavirus	infections	in	the	bank	vole	populations	
we	 studied.	 Similar	 evidence	 for	 differential	 selection	 on	 immune-	
related	genes	has	been	observed	in	bank	vole	populations	along	en-
vironmental	gradients	at	both	broad	and	local	scales,	using	candidate	
genes	(Dubois	et	al.,	2017;	Guivier	et	al.,	2014)	and	other	exploratory	
genome-	wide	approaches	(Rohfritsch	et	al.,	2018;	White	et	al.,	2013).	
For	humans,	the	diversity	of	the	local	pathogenic	environment	is	the	
predominant	driver	of	local	adaptation	(Fan	et	al.,	2016),	and	we	may	
speculate	 that	 pathogen	 environment	 and	 pathogen	 pressure	 are	
closely	associated	with	climate	variation,	with	rapid	adaptations	ex-
pected	due	to	climate	change.	Taken	together,	the	selection	signals	in	
the	most	promising	candidate	genes	suggest	that	energy	balance	and	
the	immune	system	in	the	bank	vole	are	the	most	important	targets	
of	temperature-	mediated	selection.

5  |  CONCLUSIONS

In	this	study	on	the	genomic	adaptation	of	a	small	mammal	to	a	pan-	
European	 climate	 gradient,	 we	 have	 shown	 that	 both	 geographic	
population	structure	and	climate	play	 important	 roles	 in	explaining	
genetic	differentiation	across	the	bank	vole	range.	Candidate	loci	that	
were	detected	using	GEA	while	controlling	for	population	structure	
were	most	commonly	associated	with	annual	mean	temperature	as	
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the	climate	variable	with	the	highest	explanatory	power,	highlighting	
its	importance	for	climate	adaptation	in	the	bank	vole.	We	identified	
74	 genes	 that	 showed	 evidence	 of	 climate-	mediated	 selection	 and	
whose	functional	annotation	suggested	that	energy	homeostasis	and	
response	 to	 pathogen	 infection	 are	 important	 targets	 of	 selection	
in	 the	bank	vole.	We	propose	 to	 further	 investigate	 the	 functional	
significance	of	 the	 identified	genes,	 for	 example,	 through	common	
garden	experiments	and	gene	expression	analysis,	as	they	represent	
good	candidates	for	local	adaptation.	Future	studies	should	also	look	
for	spatial	variation	in	physiological	traits	related	to	energy	homeo-
stasis	or	the	immune	system	to	ultimately	link	genetic	variation,	or-
ganismal	physiology,	and	fitness	traits	in	locally	adapted	populations.
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